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ABSTRACT ""IC

The classical m lxaz axWxJm is the following: can a rigid

object in 3-dimensional space be moved from one given position to

another while avoiding obstacles? It is known that a more Sen-

eral version of this problem involving objects with movable

joints is PSPACE complete, even for a simple tree-like structure

moving in a 3-dimensional region. In this paper, we investigate

a 2-dimensional mover's problem in which the object is a robot

aim with an arbitrary number of joints. In particular, we give a

polynomial time algorithm for moving an arm confined within a

circle from one given configuration to another. We also give a

polynomial time algorithm for moving the arm from its initial

position to a position in which the end of the arm reaches a

given point within the circle.
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time.
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Ie Zaglxoductios

With current interests in industrial automation and robotics, the problem

of designing efficient algorithms for moving 2- and 3-dimensional objects sub-

ject to certain geometric constraints is becoming increasingly important. The

maor A aZab1j (see Schwartz and Sharir [45], Reif [31)o is to determines

given an object X, an initial position Pi. a final poLC.tion Pf and a con-

straining region R. whether X can be moved from position P. to position P
2. f

while keeping X within the region R.

In the classical problem. X is a rigid 2- or 3-dimensional polyhedral

object, and R is a region described by linear constraints. Recently, several

authors (Schwartz and Sharir [4.5]. Reif [3]. Lozano-Perez [2)) have presented

polynomial time algorithms for solving this type of problem.

A more difficult problem, which is related to problems in robotics,

assumes that the object I has joints and is hence nonrigid. Again, one

desires a fast (polynomial time) algorithm for moving X from position Pi to Pf

within a region R. Unfortunately, such an algorithm is unlikely, as Reif [3]

has shown that the problem of deciding whether an arbitrary hinged object can

be moved from one position to another in a 3-dimensional region is PSPACE com-

plete.

Our paper investigates variants of the mover's problem which we believe

are of practical interest. We begin in Sections 2 and 3 by considering the

problem of folding a calaater Aalm -- that is. a sequence of line segments

hinged together consecutively. This problem arises because a natural strategy

for moving an arm in a confining region is to fold it up as compactly as pos-

sible at the beginning of the notion. Unfortunately, deciding whether an
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arbitrary carpenter's ruler (whose link lengths are not necessarily equal) can

be folded into a given length is P-complete. Because of. this, it turns out

to be at least NP-hard to decide whether or not the end of an arbitrary am

(i.e., a carpenter's ruler with one end fixed) can be moved from one position

to another while staying within a given 2-dimensional region.

In Sections 4 and 5 we consider the problem of moving an am inside a

circular region, and we are able to give polynomial time algorithms for chang-

ing configurations and reaching points.

2. oldig a Ruler

In this section, we ask how hard it is to fold a carpenter's ruler con-

sisting of a sequence of n links L1, *so* Ln that are hinged together at their

endpoints. These links, which are line segments of integral lengths, may

rotate freely about their joints and are allowed to cross over one another.

We assume that the endpoints of the links are consecutively labeled

D ... An and for 1 S i S n. we let 1i denote the length of link Li. We

define the RULER FOLDING problem to be the following:

Given: Positive integers n Il *so* In  and k.

Question: Can a carpenter's ruler with lengths 1 9 .... 1n be folded

(each pair of consecutive links forming either a 0* or 180' angle at the

joint between then) so that its folded length is at most k?



L3

A3~ 4'..,.. L A2

L 5

A1

Fig. 2.1: A typical ruler with five links.

By a reduction from the NP-complete PARTITION problem (see Garey and

Johnson 113) we can easily show that the RULER FOLDING problem is also NP-

complete. The PARTITION problem asks whether, given a set S of n positive

integers l1. 4000 In there is a subset St o S such that

11. = 1 1.

2
1.i est I lIS-S,

Theorem 2.1: The RULER FOLDING problem is NP-complete.

Prof: Given an instance of the PARTITION problem with 8 (1. .. In)o

n
let d = 2 1.. Then the desired subset S of S exists if and only if a

i=l I

ruler with links of length 2do do ies 4009 1 n , d, 2d (in consecutive order)

can be folded into an interval of length at most 2d. To see that this is the

case, imagine that the ruler is being folded into the real line interval

[02dJ. and notice that both the initial endpoint A0 of link L1 (the third

link in our ruler) and the teminal endpoint A. of link Ln (the third from

last link) must be placed at integer d. The set St in the PARTITION problem

then corresponds to the set of links Li whose initial endpoints Ai.l appear to

the left of their terminal endpoints Ai in a successful folding of the ruler.
0
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The RULER FOLDING problem and the PARTITION problem share not only the

property of being NP-complete, but also the property of being solvable in

pseudo-polynomial time. The time complexity of the RULER FOLDING problem is

bounded by a polynomial in the number of links, n, and the maximum link

length* m. In fact* it is possible to find the uinism folding length in time

proportional to num by a dymmic progrmsing scheme. However, in order to

carry out this scheme we need to know that a ruler with maximum- link length m

can always be folded to have length at most 2m.

Lama 2.1: A ruler with lengths 1, *... 1n can always be folded into length

at most 2z. where m = max {6I1S in).

Praof: Place link L1 into the interval [0,2mJ with A0 at 0. Having

placed links L1 , L2 , ... Li.l into the interval, position Li as follows:

Place L. with A. to the left Gf Ai.1 I if possible. Otherwise, place Li with

A. to the right of Ai. To see that this is possible, suppo,' that p is the

position of Ai. and note that if Ai cannot be placed to the left of Ai_l

then p < 1. Sm. Hence A. can surely be placed to the right of Ai.I. 0

Using this result, we can now give a dynamic O(m*n) progrming algorithm

for determining the minimum folding length of a ruler, where u is the number

of links iv the ruler and m is the maximum length of any given link.

Algorithm 2.1: Ruler Folding in Minimum Length

Given a ruler with links L1 . e.o Ln. compute the maximum link length a.

Then, for each k, 1 Sk S2m. construct a table with rows numbered 0 to n and

colmns nmbered 0 to k. Row i corresponds to endpoint Ai. and column j

coresponds to the position j in the interval [O.k. Fill in row 0 by writing

a T in each column j for which L0 fits in [OkJ with A1 at integer j. and F's
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in the other columns. Once row i-I has been filled in. fill in row i by writ-

ing a T in each column j for which the linkage L1 ... Li fits in [Ok) with

endpoint Ai at integer j. To do this, examine row i-i to obtain the possible

locations for Ai. 1 * The last row of the completed table contains a T if and

only if the ruler can be folded into [09k]. Find the smallest k for which the

table contains a T in the last row, and read the table from bottom to top to

reconstruct the desired folds. 0

The next example shows that 2m is, in fact, the best upper bound for the

minimum folding length.

Example 2.1: A ruler with minimum folding length 2m-e.

Consider a ruler which has n =2k-1 links L1 , **. Ln . Suppose that links

with odd subscripts have length m and that links with even subscripts have

length a-c. where c=/k. It is easy to check that this ruler cannot be

folded into length less than 2m-a. 0

A0  L A

I, A2 3,L
A 3 L 5  A2 3

4 L
I I I!
I 1 I *"
I I I I
j I I •
I I I

A 4 5 A' ' -

I I -- * 1
I 9 LA

A2k-i A.

0 a 2c • • -c m uJR -c =c +2a 2.-4 2.

Fig. 2.2: The ruler of Example 2.1.
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Raving established some basic results about folding rulers. we now return

to the original problem of moving such objects.

3. Koviag an Arm in Two Dissesions

The remainder of this paper is concerned with moving a ruler that has one

endpoints A0 . pinned down. We will refer to such a ruler as an am.

Ura1ntriz±ed NymjML=

It is easy to find out what points can be reached by the free end of an

am placed in the plane. The answer is given in the next lemma, whose simple

proof we omit. (The lemma extends readily to three dimensions.)

Lema 3.1: Let Ll s .... Lu be an arm positioned in 2-dimensional space, and

n

let r= 1.. the sum of the lengths of the links. Then the set of points
i-I

that A can reach is a disc of radius r centered at A. -- unless some Ii is

greater than the sum of the other lengths. In that cases the set of points An

can reach is an annulus with center A0 . outer radius re and inner radius

I1- I 1..
~i 3

If an am is constrained to avoid certain specified objects during its

notions, then determining whether An can reach some given point p is diffi-

cult. In the following example, we use a reduction of RULER FOLDING to show

that even for Ovalls" consisting of a few straight line segments, this problem

can be NJ-hard.
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Example 3.1: A hard decision problem.

P gap of width k

" \ 1
A 6 .. . . . . . . --- . - A 0

A ruler long, very narrow tunnel

chain of short links

Fig. 3.1: A point that is hard to reach.
We want to know whether the arm shown in Fig. 3.1 can be moved so that A

n

reaches the given point p. The arm consists of a ruler with links of integral

lengths attached to a chain of very short links. The chain links are short

enough to turn freely inside the tunnel, which is sufficiently narrow that

links of the ruler can rotate very little once they are inside. Since the

ruler cannot change its shape very much while moving through the tunnel, it

must be foldable into length at most k in order to move through the gap of

width k. Thus, point p can be reached if and only if the ruler can be folded

into length at most k. 0

We would like to find natural classes of regions for which questions con-

cerning the movement of arms are decidable in polynomial time. Certainly the

simplest such region is the inside of a circle, since there are no corners in

which an "elbov" might be caught. We believe that studying motions inside a

circle sheds light on the underlying movements of the am without the complex-

ities that arise in situations where a link can jam in a corner. For the

reamainder of this paper. we will discuss polynomial algorithms for moving an

arm within a circle. In a subsequent paper, we hope to treat more general

situations.

. ,= ,=._ ___. , -_ I " -"i...
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4. Cbaagiag Configuratioms Inside a Circle

In this section, we solve the problem of moving an arm from one given

configuration to another inside a circular region. Simply determining whether

this can be done turns out to be a matter of checking that links vhose "orien-

tations" differ in the two configurations can be reoriented. This che kng

can be done in time proportional to the number of links. Assuming that is

feasible to change configurations* we show how to move the arm to its de ?d

final position by first moving it to a certain "normal form" and then pt

each link into place, correcting its orientation if necessary. Correcting

orientation involves destroying and then restoring the positions of previous

links. Our algorithm consists of a sequence of "simple motions" (which we are

about to define), and the length of this sequence is on the order of the cube

of the number of links.

LDina Na~Lia

A definition of a "simple motion" is needed in order to make clear the

sense in which our algorithms for moving an arm are polynomial. This defini-

tion should not limit the positions the am can reach nor should it complicate

the algorithms and proofs. With these considerations in mind, we define a

"simple motion" of an arm as follows. (There are many other definitions which

would give similar results.)

Definition 4.1: A &inah zim of an am is a continuous motion during which

at most four joint angles change. (The angle between the first link and some

reference line through the fixed point % may be one of these.) Moreover, a

changing angle is not allowed both to increase and to decrease during one sim-

ple motion.
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Fig. 4.1 illustrates some simple motions of the type we use. Note that

in the motions shown, the joints where angles are changing are connected

together by straight sections of the arm. This is true of all the simple

motions we will use.

(simple motion. The locations.,of
8A 0, A1, A6, A7, n 8 rmi\ •/\ , <2A: fi xed,. Theo ane at A1, A3,

A A // A5, and A6 are changing.

7

A 5 is moving to the circle by a

simple motion. The locations ofAA A A0, A1, and A remain fixed. A4,

~A 5 , and A6 move first counter-

iA~6 = n clockwise, then clockwise aroundA 4 the circe. Only the angles at

A A2, A3, and A4 are changing.

Fig. 4.1: Examples of simple motions.

Ain AO , ndArminfxd

it is convenient to begin by showing that any amn positioned within a

circle can be moved by a short sequence of simple motions into a normal form
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that has as many joints as possible positioned gn the circle. We immediately

dispense with the case in which the distance from A. to the circle is greater

than the length of the entire arm, since in this case the circle is

irrelevant.

Definition 4.2: Suppose A is fixed at some point distance do from the cir-

J
cle. and suppose that j is the smallest integer such that 2 I d0 . Then

i=1

the arm is in namal L= if and only if L1. .... L. contains at most one bent

joint, and for each k. j Sk n. Ak is on the circle. Moreover, if L1, .... L.

is bent. the bend is at joint A j_1 . (See Fig. 4.2.) In any event.

L1 . .... L j_ lie on a radius.

A8

A A0, A1, and A2 lie on a
"- A0  radius. A3 is the first

A 6 joint that can reach the

circle. The successors

of A3 lie on the circle.

A5  A
5 4

Fig. 4.2: An arm in normal form.

Lena 4.1 (Normal Form): For any given configuration of an arm within a cir-

cle there is a sequence of O(n) simple motions that moves the arm to normal

form. Moreover, this sequence can be computed in O(n) time.

Proof: The process consists of two stages. First, the tail will be

straightened until An reaches the circle. Then, starting with A._1, the other

n n-imm
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joints will be moved one by one onto the circle.

Suppose L.. L ... L form a straight line segment. Move A toward
J 3+j1 nl U

the circle by rotating this segment about AS_1 until An reaches the circle or

Lj. 1 is added to the straight segment. In this latter case, rotate the

extended straight segment about A. 2 .  Eventually. A. reaches the circle or

the entire arm becomes a straight segment that can be rotated about A to

place A. on the circle. (Recall that we are assuming that the arm is long

enough to reach the circle.) This process requires at most 0(n) simple

motions and can be computed in 0(n) time.

Now assume that A" An-l" ""' A. are on the circle, and let
n n 3

L.. Li+ .... L. be the maximal straight segment leading back from A.. Keep-

ing Li.Li+I . ... , L. straight and the positions of A. and Ai.2 fixed, rotate
.ilj-1 .3 i-

L. about A. moving AS A m from A (See Fig. 4.3.) L is rotated until

A hits the circle (in which case we have a new joint on the circle), or

L is added to the straight segment Li. ... , Lj_.1 or Ai I hits the circle.

If Li I is added to the straight segment* then the process of rotating L. is

continued with the straight segment replaced by a new one containing at least

Li. ... , Lj. 1 and Li_1 .  If Ai-, hits the circle, then Ai 1 is held fixed

while the angles at joints Ai 1 * AS_ 1 and Aj are adjusted so as to push AS.1

to the circle while keeping A3 and its successors on the circle. In this way.

one can force onto the circle as many joints as possible (i.e., A. can be

placed on the circle, where j is minimum such that the sun of the lengths of

the first j links exceeds the distance from A0 to the circle). Once these

joints are on the circle, it is easy to position the links at the beginning of

the am as desired. This process requires O(n) simple motions and once again.

these motions can be computed in 0(n) time. Thus, a total of 0(n) simple
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notions is needed to put an arm into normal form, and 0(n) time is needed to

compute tle motions. G

A

A A AJ- 1 moves toward the circle

J+l away from Ai 2. The locations

A 7of Ai 2 and its predecessors

and the locations of A and its

i-l A successors remain fixed. Only
i AJ-I the angles at Ai 2 , AiI , Aj I

Ai-2 Aand A are changing.

Fig. 4.3s Moving an arm to normal form.

For any given position of an arm inside a circle, ve define each link to

have either 'left" or "right" orientation. This is done by first observing

that the straight line extension of a link L. cuts the circle into two arcs.

L. is said to have JILL nIn if the arc on the left of the extension,

viewed from Ai 1 to Ai . is no longer than the arc on the right. LighL oriana

Lation is defined in a similar manner. (See Fig.4.4.) Note that a link that

is on a diagonal of the circle can be regarded as having either orientation

and that a link must move to a diagonal in order to change orientation.
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left orientation right orientation

Fig. 4.4: Link orientations,

An obvious necessary condition f or being able to move the arm from one

configuration to another is that it be possible to reorient each link whose

orientation differs in the two configurations. (It turns out that this condi-

tion is also sufficient.) We are about to show that determining whether a

link can be reoriented is simply a matter of determining how far its endpoints

can be moved from the circle.

For an arm with A0fixed within a circle C9 let ci and di denote the

minimum and maximin distance that A i can be moved from C by arbitrary motions

of the arm within C. Of course, distance is measured along a radius of C. so

OS ciSdi:9d/2, where d is the diameter of C.

Since A.is f ixed. co and do are determined by the position of %o. The

Normal Form La (4.1) shows that each successive Aican get closer to the

circle by the amount 1iuntil the circle is reached. Thus*

c.i max (c i-l lim 0).
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Computing the di's is slightly more complicated. We begin by computing

for each i. 09i5n. the maximum distance t i that Ai could move from the cir-

cle if it were constrained only by the tail of the arm (i.e.. if Li 1. .... L
n

were freed from L1 9 .... Li and L1. .... Li were discarded). Then we compute

d. from t i and di.

Lemma 4.2: For any am L1, .... Li . .04t Ln inside a circle of diameter d.

d/2 if no link beyond Ai is longer than d/2;
t . I

min{d/2. d - L + 1 1.. where IL is the length of thex i~j<k j 'L

first link beyond Ai longer than d/2) otherwise.

Proof: Think of the links beyond Ai as an arm with Ai fixed. Move this

arm to normal form. Let A. be the first joint on the circle. If j 2 i+2. the

straight section of arm between Ai and Aj. 1 lies on a radius of the circle.

(If j z i or i+l, this section is just the point Ai.) While changing only the

angles at joints A j_1 and Aj. one can push this straight section along the

radius toward the circle's center while A. and its successors move around the

circle. (See Fig. 4.5.) New links are added to the moving straight section

until Ai reaches the center or the first long link Lk prevents further travel

because it has folded against the straight section (or reached the diagonal in

the case LkLi+l). D



-----------

A0 9 ... 9 A 1 have been removed.

A1, ... , Aj-1 move along the radius

while Aj- .... A nmove around the

circle. Only the angles atA

a ~ and A are changing.

A

Joint A.K-i is about to fold

completely, preventing further

L k A) travel of A along the radius.

Fig. 4.5t Moving A.i distance t.i from the circles

Now that we have calculated the t.i to it is easy to calculate the d 'a.

For i > 0:

Sinfti d -*i1.c) if Ii d/2-c

For any given distance 3t between ci and die there is obviously acme way
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to move A. to a position that is distance x from the circle. The point of the

next remarks and lemma, which we need before we can give an algorithm for

reorienting the links of an arm, is that this can be done using a short

sequence of simple motions.

Remark 4.: Suppose that the tail Lj+1 . **at Ln has been detached from the

arm L1. s... Ln. Then note that this tail can be moved from its initial posi-

tion so that the distance between A. and the circle -tnniely increases or

decreases. To see this, put the tail (regarded as an arm with initial point

A. fixed) into normal form. Then move the straight segment of links contain-

ing A. along the radius on which it lies, adding or deleting links from the

segment as A gets closer to or farther from the center of the circle. 0

Remark 4.2: Consider the arm as a whole, and suppose the tail beginning at A.

is in normal form. Then L. can be rotated about Aj. 1 to push Aj closer to or

farther from the circle while the angles at Aj and two other joints in the

tail are adjusted to keep the tail constantly in normal form. In fact, Remark

4.1 shows that any rotation of L. for which the distance between A. and the

circle is either an increasing or a decreasing function can be carried out in

at most n-j simple motions. 0

Lemma 4.3: Let A. be a joint of an n-link arm positioned within a circle.

For any x between c. and di, there is a sequence of O(n 2 ) simple motions that

moves the arm from its original position to a position in which A. is distance

x from the circle.

Proof: Compute the c i and di for each predecessor Ai of Aj . Then, given

x compute the sequence of numbers defined by the following recursive formula:
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x. si for i= j;

i_ 1 = uax{c. z i -1i } for 2Si :j.

(Note that c.i z %di.) To position A. distance z from the circle, first put

the entire am into normal form (O(n) steps). Then, beginning with A, move

each Ai in turn to a position distance x i from the circle. This is done by

rotating Li about Ai.1 while keeping the tail in normal form. All together.

at most (n-l) + (n-2) + • * - + (n-j) additional simple notions are needed, so

the entire repositioning sequence contains O(n 2) motions. Note that this

sequence can be computed in 0(n 2 ) time. 0

We are now ready to give the conditions under which links can be

reoriented.

Lemma 4.4: A link L. can be reoriented if and only if at least one of the

following inequalities holds:

i) d - Ii S d i.1 + di

ii) d i 2: 1 i + c i. 1 ;

iii) di. 1 a I i ,

Furthermore, if Li can be reoriented, then this can be done with O(n 2 ) simple

motions that can be quickly computed.

Proofs As we noted at the beginning of this subsection, Li must lie on a

diagonal in order to be reoriented. Rence, the above conditions are obviously

necessary because i) holds when Li is on a diagonal and the center of the cir-

cle is between A i 1 and Ais ii) holds when Li lies on a radius with Ai closer

to the center than A i. 1  and iii) holds when Li lies on a radius with Ai. 1

closer to the center than Ai
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To prove that the conditions are also sufficient, first suppose that ine-

quality i) holds. Using the method in the proof of Leoma 4.3. move Ai I to a

position distance d i_ from the circle in O(n2 ) simple motions. If inequality

iii) holds, move Ai_1 to a position distance d i- from the circle, again using

O(n 2 ) simple motions. After this has been done, hold Ai-I fixed, and rotate

Li about Ai. l to bring Li to the radius through Ai. .  By Remark 4.2 this

takes at most n-i simple motions, and these can be quickly computed.

If inequality ii) holds, then ciI S d/2 -Ii di. 1 0 Move Ai. I distance

d/2-1 i from the circle, and then rotate Li to the diagonal. 0

We need to make one more observation before we can show how to change

configurations.

Remark 4.3: Suppose L. is a link that can be reoriented. Then starting from

any initial configuration of the arm, we can reorient L. and with 0(n 2 ) addi-

tional motions, return A1. ... , Ai_ 1 to their starting positions without

changing the new orientation of Li e To see this, bring Li to a diagonal with

O(n 2) simple motions, and then "undo" these motions but with the orientation

of Li reversed. That is, keep the angle at Ai.1 adjusted so that at

corresponding moments before and after Li reaches the diagonal through Ai , Li

forms the sine angle with this diagonal but lies on the opposite side of it.

This keeps A. the same distance from the circle at corresponding times. (See

Fig. 4.6.) To check that the tail can be moved in a compatible fashion, note

that reversing the changes in the size of the angles in the tail indeed keeps

A. the sane distance from the circle at corresponding tives. Although the

tail does not return to its original panjaitm, it does return to its original

0
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At time t 0 -t, LI forms an angle

e with the diagonal through Ai 1 ,

and Ai is distance x from the circle.

L- ... At time t0 , Li reaches a diagonal.

At time t0 + t, A 1 has returned

to the position it occupied at

time t 0 -t. Li again forms angle

6 with the diagonal through AiIi

q a /but has changed orientation. The
L- distance between Ai and the circle

is again x.

Fig. 4.6t Reorimtation of a link Li with restoration
of A,. *... j.i .e
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AA Algari. L= QMaMr g Canfiourations

Suppose we are given an initial configuration and a desired final confi-

guration of an arm within a circle. Using the formulas of the preceding sub-

section, we can quickly compute the cts. di's. and ti s. Using Lemma 4.4. we

can then quickly check whether each link with differing initial and final con-

figuration can be brought to the diagonal. If this necessary and sufficient

condition holds, then the following motion algorithm shows that the arm can be

moved to the desired final configuration with O(n 3) simple motions.

Algorithm 4.1: Algorithm for Changing Configuration

Step i) Move the arm to normal form (O(n) simple motions);

Step ii) Once the predecessors of Ai are in their final positions.

reorient L. if necessary, restoring the predecessors of A. to their final

positions ( 0(n 2) notions, by Remark 4.3). Then rotate L about Ai I to put

Ai in final position (n-i simple motions, by Remark 4.2). Increment it and

repeat Step ii) until i >n. 0

Notice that since the ci's and di's depend only on the 1i's, the very

ezistence of the desired final configuration assures us that the distance from

Ai to the circle will stay between ci and di while Li is being rotated about

Ai.1. This is because the distance between Ai and the circle changes onoton-

icly during this rotation.

Notice also that the man&tim of whether the desired final configuration

can be attained can be answered in linear time on a machine that does real

arithmetic (+. -. e, /2. sin(.)) since it is necessary only to compute the

cits. dits. and tits. determine the links which must be reoriented, and check
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that the conditions of Lzua 4.4 hold for these links.

In the next section, we show how to reduce the SabJ= of reaching a

given point with An to a problem of changing configurations.

5. leaching a Point with am Arm Xmaide a Circle

In this section, we will solve the problem of deciding whether an arm

inside a circle can be moved from a given initial position to one which places

An at some given point p. We will do this by showing that this problem can be

reduced to the problem of changing configurations, which we solved in the last

section.

PoiULS. ga £IIL CireiA lahad IM J. ZAtj

We want to compute a faa a canfigurAtinm (i.e., one to which the arm

can be moved from its initial configuration) that places An at a given point p

(inside or on the circle). In order to find such a configuration, we first

construct the set Rj of points an the circle that can be reached by A. from

the given initial position of the arm.

Linao 5.1: Each R. consists of at most two arcs of the circle.

RZna: (Induction on j) Clearly, % = f%) if A is on the circle. Oth-

erwisee the Normal Form Lawa 4.1 shows that the first non-empty R . is the onea

for which

S1 + + ] • lj_l< 0  d0 :l9 +  + * +1. I

and that all subsequent lts are non-ampty. It is easy to see that tb I -AL a

nou-mpty Rl consists of at most two arcs.

~ I
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Now consider a j for which R is nonempty but consists of at most two

arcs. If A. is at some point in R.. we can move Aj_ 1 La the circle while mov-

ing A. around the circle. (This can be done in the same way that an arm is

put into normal form.) Of course, Aj stays in R during this process. Thus.

each point in R. belongs to an arc of Rj that contains a point reached by A

with A. in R. . Hence, counting the number of arcs in R. is equivalent to

counting how many of its arcs contain a point that Aj can reach with Aj_1 in

R j_ 1 •

Suppose that Aj_ 1 and A. are on the circle and that d j 1 k 1.. Then we

can reorient L. while moving A. around the circle, keeping A. in R. Our

observation about counting arcs shows that each arc of Rjl gives rise to only

one arc in R. Thus in this case. R consists of at most two arcs.

Nov suppose that Aj. I and A. are on the circle and that dj. I L j. Then

we can move A from any point in Rj-I to any other point in Rj. I without
j-1

ever taking A. off the circle or changing the orientation of L. Hence. all
a ae

the points of R. that are reached from Rj. 1 by Lj with left orientation are in

the same arc of R.. The same is true for L. with right orientation. so again

R. consists of at most two arcs. 0

In our algorithm for reaching a point p. we will need to find for any

given point in Rj a feasible configuration of the arm that positions A. at

that point. In the next section, we show how to compute this information

quickly.

h f & 1 I'L

First we will show that each set R. is a union of certain contributions

from its predecessors, and then we will describe an algorithm for calculating
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the Rjts and determining how to reach them.

The following lemma, whose proof we omit, can easily be established using

the ideas in the proof of the Normal Form Lemma 4.1.

Lemma 5.2: Suppose an arm is positioned inside a circle so that A. is located

at a point pj on the circle. Then Aj can be kept fixed at pj while the arm is

moved to a position where one of the following conditions holds:

i) links L1, .... L. form either a straight line (with no folds) or an
J

"elbow" whose only bend is as Aj.I|

ii) for some i<js A. is on the circle, and links Li+1s .... L. form

either a straight line or an elbow whose only bend is at A j.1.

Given a value for j, we need to find out for each R., i < j, which points

of R. can be reached from Ri by the straight lines and elbows of Lemma 5.2.

Suppose that pi is a point in Ri and that li+ + + 1 .+ :.Sd. If all

the links between A. and A. can be given the same orientation, then pi contri-

butes a point to R. by means of a straight line. (If both orientations are

possible, then pi contributes two points to R..) Contributions of this type
.3

from points in ft. form at most four arcs, two for each arc of Ri3. These arcs

amount to shifts of R. around the circle.

Now consider the possibilities for joining a point pi in Ri to a point pj

in R by an elbow whose last joint is the one which is bent. Certainly

Ii+l + • a a + lj- 1 must be at most d. Since L. and the straight line from

Ai to Aj,1 sight have either orientation, there are four types of elbows to

consider. Consider a particular feasible elbow, and note that it must place

Aj. 1 somewhere on an arc of a circle of radius Li+1 + + • 1 centered

j-• l inihi i7l m" i P : -- -
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at p.. Since the orientations of the links in the elbow are specified, this
2.

arc is bounded by the circle at one end and by the diagonal through Ai at the
other. The set of points that can then be reached by L. in its specified

orientation, with Ai_1 on the arc, forms an arc on the circle. Hence, each

feasible elbow type allows Ri to contribute a widened shift of itself to R...

The contributions of A. to R. can be determined in a similar fashion.

2
It is now easy to give an 0(n ) algorithm to do the following: compute

the endpoints of the Rits. and build a table that allows one, given a pj in

Ril to find in 0(n) time (where n is the number of links in the arm) a feasi-

ble configuration having A. at pj.

Algorithm 5.1: Finding R's

First, determine how the links can be oriented (O(n) time). Next, com-

pute the contributions frem AO of straight lines and elbows whose last joint

is the one that is bent. Record these contributions by listing the endpoints

of the arcs together with the description of the lines or elbows that gen-

erated them (0(n) time). At this stage, the first non-empty Ri has been com-

pletely determined, and so its endpoints (of which there are at most four) can

be computed (0(n) time). Finally, for each R. in turn, compute the contribu-
.

tion of R to its successors, and then compute the endpoints of R+ I (O(n)

time per iteration). 0

In the next subsection. we use the information about the Ri's to solve

the problem of moving An to an arbitrary point inside the circle.

RMa JLaOaah a ain

If we want to place A at a point p on the circle, we merely compute Rn

In ,
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and test p for membership. If p is in Rn' we use the table generated by Algo-

ritlm 5.1 to determine a feasible arm configuration that has An at p. Then we

can use Algorithm 4.1 to move the arm to this configuration.

Now suppose p is inside the circle. If the arm can be moved to a confi-

guration in which A. is at p and some other joint is on the circle, then p can

be reached by a feasible configuration in which some A is on the circle and
i

links Li+1. .**a Ln form either a straight line or an elbow with the bend at

A i+ 1  To see whether this happens, we compute the R..'s and then look for an

appropriate straight line or elbow reaching from p back to a non-empty R.. If

no such line or elbow can be found, we check to see whether p can be reached

by a configuration that does not touch the circle.

Lema 5.3: Suppose that an arm L1. .... LD can be moved to a configuration in

which An is at a given point p inside the circle, but that no such feasible

configuration can have any joint on the circle. Then the arm can be moved to

a configuration in which A is at p and at most two joints are bent.

Prnnf: Consider a feasible configuration with A at p. If it has moren

than two bends, proceed as follows. Let A. Aj. and Ak . where 0<i<j<k<n.

denote the first three bent joints. Let A denote the fourth bent joint if
m

one exists; otherwise, set A =An . Keeping Ak and its successors pinned down.mn

rotate the line of links between A and Ai about AO so that Ai moves AM from

A m. (See Fig. 5.1.) Eventually, one of three events must occur:

i) some joint straightens (in which case we can start over with a

smaller number of bends);

ii) Ai moves close enough to Ak to fold the joint A completely;
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iii) Ai reaches the line through A0 and Am.

Note that by hypothesis, no joint can hit the circle.

If ii) occurs, keep joint A. folded, unpin A ,, and continue the rotation.

Since A. is moving away from A , the rotation can continue until joint Ak

straightens or Ai reaches the line through A0 and Am.

Assume that Ai, %, and Am are collinear. Pin down A.$ *.*. A and

A .*so& A v and rotate the line of links between Ai and A. about Ai so that

m n 2.

A. moves axa from A One of the joints A. and Ak must straighten during

this rotation. 0
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i The locations of A and its successors
are held fixed while Ai is rotated

A. . Ak about A0 away from A m  Joint Ai or
A may straighten, Ai may reach the

line through A0 and A , or

A .m

Ak

" \ Ai A joint A j may fold, preventing

continued rotation of Ai about A0.

A0

Am

A

'N 
Then A k is unpinned, joint A is

kept folded, and the rotation is
continued until Ai reaches the line
through A and A

0 mn

A

Fig. 5.1: Reaching p with at most two bent joints,

There are O(n2) configurations of the type described in Lm a 5.3. and
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each one can be tested for feasibility in constant time. All together, then.

we need O(n 2 time to compute the R's 0 o (n) additional time to check f or a

feasible configuration with some joint on the circle, and if no such confi-

guration exists. O(n ) time to check for feasible configurations with no joint

on the circle. If a feasible configuration is found, we can then use Algo-

rithm 4.1 to move A nto p with 0(n 3) simple motions. Note that our method can

be used to solve the problem of moving any arbitrary joint A.i to a specified

point.
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